Non-symbolic and symbolic notations in simple arithmetic differentially involve intraparietal sulcus and angular gyrus activity.
نویسندگان
چکیده
Addition problems can be solved by mentally manipulating quantities for which the bilateral intraparietal sulcus (IPS) is likely recruited, or by retrieving the answer directly from fact memory in which the left angular gyrus (AG) and perisylvian areas may play a role. Mental addition is usually studied with problems presented in the Arabic notation (4+2), and less so with number words (four+two) or dots (:: +·.). In the present study, we investigated how the notation of numbers influences processing during simple mental arithmetic. Twenty-five highly educated participants performed simple arithmetic while their brain activity was recorded with functional magnetic resonance imaging. To reveal the effect of number notation, arithmetic problems were presented in a non-symbolic (Dots) or symbolic (Arabic; Words) notation. Furthermore, we asked whether IPS processing during mental arithmetic is magnitude specific or of a more general, visuospatial nature. To this end, we included perception and manipulation of non-magnitude formats (Colors; unfamiliar Japanese Characters). Increased IPS activity was observed, suggesting magnitude calculations during addition of non-symbolic numbers. In contrast, there was greater activity in the AG and perisylvian areas for symbolic compared to non-symbolic addition, suggesting increased verbal fact retrieval. Furthermore, IPS activity was not specific to processing of numerical magnitude but also present for non-magnitude stimuli that required mental visuospatial processing (Color-mixing; Character-memory measured by a delayed match-to-sample task). Together, our data suggest that simple non-symbolic sums are calculated using visual imagery, whereas answers for simple symbolic sums are retrieved from verbal memory.
منابع مشابه
Neural correlates of symbolic and non-symbolic arithmetic.
Recent evidence suggests that areas in and around the intraparietal sulcus (IPS) represent magnitude in a stimulus-independent format. However, it has not been established whether the same is true for mental arithmetic or whether activation for higher level numerical processing diverges as a function of stimulus format. We addressed this question in a functional imaging study by presenting part...
متن کاملThe role of the left intraparietal sulcus in the relationship between symbolic number processing and children's arithmetic competence
The neural foundations of arithmetic learning are not well understood. While behavioral studies have revealed relationships between symbolic number processing and individual differences in children's arithmetic performance, the neurocognitive mechanisms that bind symbolic number processing and arithmetic are unknown. The current fMRI study investigated the relationship between children's brain ...
متن کاملBeyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere
Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific cerebral subregions? Or is it merely coincidental...
متن کاملDevelopmental bias for number words in the intraparietal sulcus.
Children and adults show behavioral evidence of psychological overlap between their early, non-symbolic numerical concepts and their later-developing symbolic numerical concepts. An open question is to what extent the common cognitive signatures observed between different numerical notations are coupled with physical overlap in neural processes. We show that from 8 years of age, regions of the ...
متن کاملPhonology and arithmetic in the language–calculation network
Arithmetic and language processing involve similar neural networks, but the relative engagement remains unclear. In the present study we used fMRI to compare activation for phonological, multiplication and subtraction tasks, keeping the stimulus material constant, within a predefined language-calculation network including left inferior frontal gyrus and angular gyrus (AG) as well as superior pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1643 شماره
صفحات -
تاریخ انتشار 2016